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1. Phys.: Condens. Matter 6 (1994) 5201-5222. Printed in the UK 

Magnetic phase transitions in double hexagonal close packed 
neodymium metal-commensurate in two dimensions 

B Lebecht. J Wolnyt and R M Moons 
t Physics Depanment. Ris0 National kbomtory, Denmark 
t Faculty of Physics and Nuclear Techniques, University of Mining md Metallurgy. Cracow, 
Poland 
f Solid State Division. Oak Ridge National Moratory. O& Ridge, TN, USA 

Abstract. In elemental neodymium. a series of phase ansitions between multi-q modulated 
magnetic structures tnkes place below the magnetic ordering temperature TN. Based on extensive 
neulron diffraction studies of the temperature dependence of the length md orientation of 
the modulation vectors associated with these structures we suggest thal there exists a simple 
phenomenological relationship between the symmetry of the double hexagonal crystal lattice 
and the symmehy of the corresponding magnetic lattice. The model has a resemblance w the 
situation found for monolayer h l m  on solid surfaces (orientational epitaxy) when considering 
the spin system as the adsorbate and the atomic structure as the subslrate. In one dimension, the 
modulaled magnetic structures are sequences of a commensurate to incommensurate Vansition 
Followed by incommensunle to incommensurate vansitions followed by an incommensurate lo 
commensmte transition. However, i n  two dimensions. all the modulated magnetic sWcNres 
are equally well described 3s higher-order Commensmle to "mensurale msitions. where 
the magnetic unit cell is commensumte with the crystallographic unit cell, but rotated by some 
angle around the hexagonal axis with respect to the crystallographic unit cell. The rotation 
angle as well as the magnetic unit cell depend on temperature. The data suggest lhat the rotation 
angle is zem whenever there is B change from one type of multi-q structure to another. i.e.. in 
this case, the magnetic and the crystallogmphic unit cells are commensurate in both one and 
two dimensions. Previous and recent results for the light rare earth metals neodymium and 
praseodymium and alloys thereof, which lend supporl w this mterpremion. are reviewed. 

1. Introduction 

It is well known from the literature that the light rare earth metals neodymium and 
praseodymium crystallize in the double hexagonal close-packed crystal (DHCP) structure 
(Koehler 1972) with only minor differences in their lattice constants. The two elements 
form a complete range of solid solutions, which despite their identical crystal structure 
exhibit a variety of magnetic behaviour. Elemental PI is a singlet ground state system, 
which orders in a basal plane modulated magnetic structure only at very low temperatures 
(well below 1 K) (McEwen and Stirling 1981, Mgller et a! 1982). Elemental Nd, on the 
other hand, is a Kramers doublet, which passes through a sequence of basal plane modulated 
magnetic structures below the N6el temperature TN = 19.9 K (Moon et ol 1964, Lebech 
1981, McEwen et al 1985, Forgan er nl 1989, 1992h, Gibbons et ai 1992). The Nd rich 
alloys of Nd and PI form magnetic structures that at high temperatures are similar to those 
found in Nd, and at low temperatures the experimental results indicate the existence of 
modulated structures with a c-axis commensurate component of the modulation vector both 
in Nd (Forgan eral 1992b) and in the Nd rich Nd-Pr alloys (McEwen et al 1986, Zochowski 
et al 1992, Wolny and Lehech 1995). 
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Before continuing, we review what is known about the magnetic stlucture in elemental 
Nd. Most of this knowledge is based on neutron diffraction data although other techniques, 
both theoretical and experimental, have also been essential. The crystal smcture is 
hexagonal with a four-layer stacking sequence along the c-axis of the type ABAC. The 
atoms in the A layers have a nearly face centred cubic arrangement of nearest-neighbour 
atoms and are usually called the cubic sites. The atoms in the B and C layers have 
a hexagonal arrangement of nearest neighbours and are therefore called the hexagonal 
sites. Consequently, these two types of site may behave differently magnetically, as indeed 
experiments show they do. From the symmetry point of view the most important difference 
between the two sites is the inversion symmetry, which belongs to the symmetry elements 
of the cubic sites, but not to the symmetry elements of the hexagonal sites. Because of 
this property, the twofold axes in the basal plane for cubic sites are parallel to the three 
equivalent symmetry related directions given by the real space vectors, whereas the 
twofold axes in the basal plane for hexagonal sites are parallel to the symmetry related 
reciprocal space &;-vectors (see figure 1). In this context, it is worth noticing that the &;- 
vectors are also parallel to the mirror planes perpendicular to the basal plane of the DHCP 
structure. Throughout the paper, we use B to signify a unit vector along U, square brackets 
to indicate directions of axes and angle brackets to indicate symmetry related directions, 
i.e. [hkl] and (hkl),  respectively. 
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Flare 1. A projection of all atom in the DHCP lattice on a single hexagond plane. Cubic A 
silts are shown as 0,  hexagonal B and C sites as 0 a d  0, respectively. The bold pdlelograms 
indicate the 7 x 1 and 1 x (8t 5 )  mmmensunfe magnetic unit cells. respeclively (see section 2). 
Also shown are lhe real (4, i = 1.2,3) and the reciprocal lattice unit vectom (&:, i = I. 2.3). 

The magnetic shucture of Nd was first described by Moon ef al (1964) as a single-q 
modulated structure where the moment p(ri) at site r; in the magnetic domain k, is given 
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p(T;) = f i k  COS(qk .Ti + W )  k = 1,2 Or 3 (1) 

with !Jk and q k  along the three equivalent reciprocal lattice vectors ci;, i.e. perpendicular 
to the edges of the regular hexagon forming the crystal structure. As noted above, these 
directions have the highest symmetry in the basal plane for hexagonal sites and they also 
correspond to some of the symmetry elements for the cubic sites. It is therefore not 
surprising that in the first experiments, the basal plane modulation vectors forming the 
magnetic smcture were found to be aligned along these directions. Moon et al (1964) 
also suggested that at high temperatures only the hexagonal sites ordered according to (I), 
whereas both sites were ordered in a similar way at lower temperatures, but with different 
modulation vectors associated with the ordering at each of the two sites. 

In an attempt to explain certain discrepancies between the single-q model predictions and 
the experimental findings it was suggested by Bak and Lebech (1978) that the structure was 
instead a so called three-q smcture where the moments modulated by the three symmetry 
related modulation vectors qk are coupled to give a resultant moment, ~ ( T J  at site ~ i ,  

where 

3 

p ( T i ) = C I . L k C O S ( q k . T i f L Y k ) .  (2) 
k=l 

This structure is the vector sum of three modulated moment components pj ( ~ j ) .  pz(rj) and 
p 3 ( ~ ; )  of the same form as given by (1). The moment amplitudes and the modulation vectors 
of these three components form a three-armed star (see figure Z(a)) with 120" between the 
arms of the star, In (1) and (2), we have used the original notations of Bak and Lebech 
(1978), and it should be emphasized that the index k has significantly different meanings in 
(1) and (2). In (1). the index k refers to each of the possible magnetic domains that may be 
populated in a multi-domain single-q magnetic structure with modulation vector along one 
of the symmetry related directions. In (2). the index k refers to the moment components that 
by vector addition form the resulting moment at site ~j in a single-domain three-q structure 
with modulation vectors along the three symmetry related directions defined by the sta~ of 
vectors q. For Nd, this means that (1) describes p(ri) for one of the six equivalent magnetic 
domains in the single-g structure, while (2)  describes P ( T ; )  for one of the two equivalent 
magnetic domains in the three-q structure. It is also worthwhile to note that in principle 
the summation over the index k in (2) can take any value, in which case (2) describe the 
moment at site ~i of a single domain of more general magnetic structures, the so called 
multi-q structures. For these multi-q structures, the number of possible magnetic domains 
will most often be larger than two. 

When proposed for Nd, the threeq model described by (2) was based on Landau 
symmetry arguments and renormalization group theory. One of the results of this treatment 
is that the magnetic order transition at TN is first order provided the order is to a single- 
q magnetic structure, whilst the transition at TN is second order provided the order is to 
a three-q magnetic structure. The then accepted experimental fact was that the magnetic 
ordering transition was of second order. Accordingly, this could only be consistent with a 
threeq magnetic structure, and hence such a structure model was proposed for Nd. A further 
prediction of the threeq model was that lattice modulations caused by spin-lattice couplings 
should accompany the onset of magnetic ordering. The existence of these modulations was 
not confirmed experimentally. Instead it was revealed (Moon et al 1979, Lebech ef al 
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1979, Lebech and Als-Nielsen 1980) that at 4 about 1 K below TN, both q k  and pk tum 
away from the high-symmetry a; directions. The angles between a: and q k  or a; and pk 
are - 2.5" or - 15" (Lebech 1981), respectively. More recent measurements of lattice 
expansion in Nd by Zochowski et al (1986) showed unambiguously that the transition at TN 
is first order. Therefore, according to the theoretical predictions of Bak and Lebech (1978) 
the incipient magnetic order must be a single-q structure as originally suggested by Moon 
et ai (1964). However, this does not exclude transitions at lower temperatures to multi-q 
magnetic structures similar to the three-q structure described by (2) .  In fact McEwen et al 
(1985) have suggested and given experimental evidence that below the magnetic structure 
of Nd is a two-q structure, where the angle between the two coupled moment components 

and p, is - 90". and the angle between the corresponding modulation vectors q k  and 
q! is < 120" (figure (2(b)) in agreement with the findings of Lebech (1981). Based on a 
series of neutron diffraction studies in applied magnetic field or under pressure, McEwen, 
Forgan and collaborators (McEwen et al 1982, 1985, Forgan et al 1989, Zochowski er al 
1991, Forgan et al 1992, b, Forgan 1992, Gibbons et al 1992) have, in a very convincing 
way, proposed that below IO K, the moments associated with the magnetic order on both 
crystallographic sites couple to form first a three-q structure (figure 2(c)) and then, at even 
lower temperatures, a four-q magnetic structure (figure 2(d)). All of these multi-q magnetic 
structures may as mentioned earlier be described by generalization of (2). 

Figure 2 gives an illustration of the different multi-q structures observed in Nd. The 
right hand diagrams of figure 2 display the diffraction pattems observed around a particular 
reciprocal lattice point (") in a multi-domain sample. The two left-hand diagrams show the 
relative orientations of the basal plane projections of the modulation vectors Gj, and the 
moment amplitudes pi], where the index i labels the moment component (i 1 for the 
single-q structure) and the index j labels the magnetic domain. This double labelling of the 
modulation vector and the moment component is used only in connection with figure 2 and 
the rest of this section in order to avoid the ambiguity of (1) and (2). The single-q structure 
given by (1) and the three-q structure given by (2) are in fact both illustrated in figure 2(a). 
In the single-q case given by (I) ,  (611, f i l l ) ,  (412, biz) and (@13,p13) refer to the sets 
of coupled modulation vectors and moment amplitudes for three of the symmetry related 
magnetic domains that may coexist in a multi-domain sample with hexagonal symmetry 
and modulation along a basal plane symmetry direction. In the three-q case given by (Z), 
(411, ,GI I ,  421 ,  P z l ,  431, PSI) refer to one set of coupled modulation vectors and moment 
amplitudes for a single magnetic domain in a three-q sample with hexagonal symmetry and 
modulations along basal plane symmetry directions. For both the single-q three-domain 
and the three-q one-domain cases, all six diffraction spots shown on the right hand side of 
figure wa) have the same intensity when disregarding geometrical factors. The filled circles 
arise from the (411, @I,)  (or (-411, -cl,)) magnetic domains shown by thick wows on 
the left in figure 2(a), while the unfilled circles arise from the remaining symmetry related 
magnetic domains. Although the right hand side of figure Z(a) displays the diffraction 
pattem for the single-q case, it may also illustrate the intensity pattern for three-q case 
given by (2) with modulation vectors and moments given by (411, @ I I ,  421 ,  b21, 431, @31) 

and shown by thick and dot-dashed mows and by the letters in parenthesis in figure Z(a). 
In this case, all the diffraction spots would have to be shown as filled circles. 

In figure 2(b), (c) and (d), which illustrates the special two-q, three-q and four-q 
magnetic structures observed below T, in Nd, only one set of coupled modulation vectors 
and moment amplitudes (one domain, j 1) is shown, even though we most often consider 
a group of diffraction spots originating from different magnetic domains. As mentioned 
previously, the diffraction pattems on the right of figure 2 show all the diffraction spots 



Magnetic phase transitions in Nd metal 5205 

Figure 2. Directions ofthe basal plane projections of the modulation vectoIs. moment amplitudes 
and the corresponding diffraction patterns around a pnrticular nuclear Bragg point (') for the 
multi-q smctum described in the tent. For illustrative purposes. the angles between the 
symmetry direcdons and the <-vectors are doubled and the angles bemeen the coupled mDmentS 
(fiji, fi,) and @ 3 j ,  LA,) are identical to 90". The indices i and j used for < and fi refer lo 
the coupled <- and p-vectors and to the domain I&l. respectively. 

that may be observed in a multi-domain sample. The filled circles arise from the domain 
corresponding to the coupled modulation vectors and moment amplitudes shown by the 
thick arrows on the left in figure 2@), (c) and (d), while the unfilled circles arise from the 
remaining symmetry related magnetic domains. It should be emphasized that in general each 
group of magnetic satellites (for instance the left hand group of four satellites in figure 2(d)) 
will originate from different magnetic domains. It should further be noted that figure Z(c) 
shows a special case of the threeq structure with 631 parallel to the [OlO] direction. If, 
instead, @31 is rotated slightly with respect to the [OlO] direction, the corresponding satellites 
will split in  a similar way to the 411 and 421 satellites (see for instance figure 2(b)), and the 
number of satellites around the Bragg point will be increased by six. 

2. Description of one-dimensional commensurateincomemurate phase transitions 
in Nd 

In the following we shall not be concerned with which type of multi-q structure describes 
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the magnetic sbllcture of Nd in a particular temperature range. We shall concern ourselves 
only with the temperature dependence of the length and direction of the modulation vector 
and attempt to explain some common features of the magnetic ordering of the Nd and Nd-Pr 
alloys in terms of the symmetry of the DHCP crystal structure. 

Before continuing, we need to define what we mean by one-dimensional commensurate 
or incommensurate magnetic phase transitions in Nd. For any basal plane modulated 
structure we may write 

9 = (qz ,  q y )  (3) 

where qx and qy are the Cartesian coordinates of q in units of (a*(. For q along the direction 
of highest symmetry for the hexagonal sites, qy = 0, and the structure is commensurate only 
if qz is given by rational numbers. The fundamental commensurate values are therefore 
given by the following relations: 

qr = I / n  q y = O  (4) 

where n is an integer. One-dimensional commensurats-incommensurate phase transitions 
for the modulation vectors associated with order for instance at the hexagonal sites will be 
given by deviations from (4), for instance by qy # 0. 

If we consider the basal plane projection of figure I ,  it is obvious that there is a shift of 

f f (7.sr/aa) 

between the hexagonal and the cubic sites along the &" direction, and when, at low 
temperatures, the cubic and hexagonal sites start to interact, we may expect the folIowing 
relations to describe the fundamental commensurate values of the basal plane components 
of the modulation vector rather than the relations given by (4): 

Here, n is an integer assumed in (4). However. in principle n may even be a fractional 
number, in which case (4) and (6) describe higher-order commensurate structures. 

Equations (4) and (6) describe two different situations for the one-dimensional 
commensurate struchxes: (4) is fulfilled when the modulation originates from interaction 
between atoms within a single basal plane (of either hexagonal or cubic site atoms) 
perpendicular to the c-axis. Equation (6) is fulfilled when the interaction between sites 
belonging to near-neighbour planes (cubic and hexagonal) starts to dominate. It should be 
emphasized that if we consider the spin system as the adsorbate and the atomic structure as 
the substrate, the conditions given by (4) and (6) are equivalent to the situation reported for 
monolayer films on solid surfaces, i.e. orientational epitaxy. Whenever the structure o f  thc 
material adsorbed on a homogeneous substrate becomes incommensurate with the substrate, 
the lattice formed by the adsorbed atoms is twisted in relation to the substrate lattice. The 
ground state for these systems is the incommensurate solid with static distortion waves that 
has been treated theoretically by Novaco and McTague (1977). Shiba (1980), Grey and 
Bohr (1991) and Bohr and Grey (1992). 

When illustrating our ideas in relation to the behaviour of the modulation vector in 
Nd and Nd-Pr alloys we assume that there is competition betwen the crystalline substrate 
favouring an orientational epitaxial arrangement of the spins on the hexagonal plane substrate 
and the oscillatory nature of the magnetic interactions between neighbouring spins. Let us 
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now consider how this could agree with the results of the neutron diffraction studies. For 
Nd the neutron diffraction studies show that near TN, where the magnetic interactions are 
relatively weak, only the hexagonal sites order magnetically with moments and modulation 
vectors confined to a single hexagonal plane. If we assume that the crystal structure 
dominates the formation of the incipient magnetic order, a commensurate modulated 
magnetic structure would be described by an in plane modulation vector that connects 
hexagonal sites only, i.e. the structure would be commensurate if (4) is obeyed. In figure 1 
we illustrate this by the 7 x 1 magnetic unit cell, which corresponds to n = 7. Within the 
accuracy of the presently available experimental data this agrees reasonably well with the 
q(T2) for Nd (see figure 7), and for N&~sP~o,x  and Nd0.6&0,35 (Wolny and Lebech 1995). 

As the temperature is lowered the magnetic interactions grow, and at some temperature 
the order on the hexagonal sites induces a moment on the cubic sites. If we limit the 
discussion to only the in plane commensurate component of the modulation it must be a 
vector parallel to a high-symmetry direction that connects a hexagonal site to a cubic site 
in the nearest cubic layer, i.e. for the magnetic structure to be commensurate (6) should 
be obeyed. This is also illustrated in figure 1, where the 1 x (8 + 5)  magnetic unit cell 
corresponds to (qx, qy)  = (&, 0). At even lower temperatures we may further have magnetic 
shuctures for which the order is dominated by interactions between cubic sites only, i.e. a 
commensurate structure may once again be given by (4), similar to the case illustrated by 
the 7 x 1 unit cell shown in figure 1. Experiments show that one could even envisage a 
situation where the cubic site moments become large enough to induce additional order on 
the hexagonal sites, i.e. (6) is again valid. 

3. Summary of experimental endencc for commensurateincommensurate transitions 
in Nd 

3.1. Description of the effects of experimental resolution 

Before correlating these ideas to the observed temperature behaviour of the modulation 
vectors in Nd we need to consider briefly the experimental arrangement and the effect of 
the instrumental resolution on the observed diffraction patterns. The data to be presented 
below are from measurements on two different Nd single crystals performed at different 
neutron spectrometers, in different sample environments and at different reactors. The data 
sets are qualitatively consistent, and illustrate fully the complex behaviour of the magnetic 
structures of Nd. The single-crystal samples were oriented either with a [-I201 or the [Ool] 
axis vertical and perpendicular to the horizontal scattering plane. The diffractometers were 
either triple-axis instruments operating in the elastic mode, which allowed us to study only 
reflections in the horizontal plane, or a two-axis diffractometer with a detector that could be 
tilted out of the horizontal plane (normal beam inclination geometry). This latter instrument 
allowed us to study reflections both in and above the horizontal plane (higher layers), which 
as we shall see below was rather essential. 

Figure 3 illustrates the horizontal plane projections of Bragg spots and corresponding 
resolution ellipses for two closely spaced satellite reflections (filled circles) in a hexagonal 
arrangement perpendicual to [OOI] around a general reciprocal lattice point (hkl) (unfilled 
circles). Figure 3(a)-(d) shows the situation for crystal orientation I ([a011 direction 
perpendicular to the plane of the figure) for satellites split along qy (figure 3(a) and (c)) or 
for satellites split along qx (figure 3(b) and (d)). Figure 3(e) and (f) shows the equivalent 
situations for crystal orientation I1 ([-1201 direction perpendicular to the plane of the figure). 
Here, and in the following, we refer the positions of the magnetic satellite reflections to 
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Orientation I 

Figure 3. An illusoation of the harizonwl plane projections of the resolution ellipses with 
respect to the diffraction patems obsemed in Nd for two different cryslal orientations. For 
crystnl orientation I, the [OOI] direction is perpendicular to the plane of the figure and for cryslal 
onentation U, the I- 1201 direction is perpendicular to the plane of the figure. (a), (c) and (e) 
are for safellites split in the y d k t i o n s  (qr # 0) and (d) and (0 are for satellites splil in 
the x-directions (ql. - q& # 0). The ellipses ‘mark the half intensity contours For clarity, 
the ellipses are enlarged with respect to the recipmcal lattice. The outer ellipses and the inner 
hatched ellipses correspond to relaxed and improved exit collimcio”, respectively. The unfilled 
circles are the reciprocal lattice point (hkl) and the filled circles the magnetic satellites. In 
general, the projection of the origin of the reciprocal lattice is far to the left in (a) and (b) 
as indicated by the mows pointing to the left. Only for satellites mound (001) type nuclear 
reflections ((c) and (d)) does the origin of the reciprocal 13niee project on top of the nuclw 
lattice position. resulting in identical orientation of ellipses for all satellite pairs 

Cartesian coordinate systems cenbed at the reciprocal lattice point (hkl). However, the 
( x .  ).)-axes for a particular set of satellites are oriented so that the q,-directions always 
correspond to the directions of the symmetry related [loo] reciprocal lattice directions. 
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For elastic scattering and relaxed exit collimation (unfilled ellipses), the angle between 
the reciprocal lattice vector and the long axis of the resolution ellipse will be approximately 
equal to the Bragg angle 9 @bech and Nielsen 1975). When the exit collimation is 
improved, either by Soller slits or by means of an analyser crystal, the long axis shortens 
and the ellipse turns somewhat (hatched ellipses). It should be noted that, for a general 
lattice point (hkl), the projection (on the plane of the figure) of the origin of the reicprocal 
lattice lies far to the left in figures 3(a) and (b) as indicated by the mows pointing to the 
left. This implies that from a resolution point of view the three satellite pairs (A, B and 
C or D, E and F) will generally be different as illustrated in figures 3(a) and (b). Only 
for satellites around (001) (figures 3(c) and (d)), which may be studied in orientation I by 
tilting the detector out of the horizontal plane, does the origin project on top of the (001) 
reciprocal lattice point. This further implies that, for (001) type reflections, the resolution 
ellipses are identical by symmetry for all satellites surrounding the (001) reciprocal lattice 
points, as illustrated for instance for the A, B and C or D, E and F satellites in figure 3(c) 
and (d). The above means that in general only some of the satellite pairs may be resolved. 
For this particular crystal orientation (orientation I) and an arbitrary reciprocal lattice point 
(hkl) (except (Wi)), we have the following situation: satellites at A, A' and F, F' are well 
resolved, satellites at B, B' and E, E' are reasonably resolved and satellites at C, C' and 
D, D' are poorly resolved or unresolved. For satellites around (001) the situation is as 
follows: all satellites are equivalent by symmetry, i.e. satellites corresponding to figure 3(c) 
(qy split) are all well resolved while satellites corresponding to figure 3(d) (qz split) are 
poorly resolved or unresolved. 

As mentioned above, figure 3(c) and (0 shows the orientation of the resolution ellipses 
when the crystal is oriented with [-1201 perpendicular to the plane of the figure. If 
(hkl) = (OOi) ,  the poor vertical resolution (perpendicular to the plane of the figure) causes 
satellites split by qy # 0 (perpendicular to the plane of the figure) to appear as a single 
diffraction spot (figure 3(e)), while satellites split along qx will be extremely well resolved 
(figure 3(f)) .  For completeness, it might also be noted that if (hkl) = (h00) in figure 3(e), 
G and H correspond to the (hO # 1)  nuclear Bragg points, respectively. 

3.2. Results of the initial neutron diffraction studies 

The results of the initial neutron diffraction studies are shown in figures 4-6. In figure 4 
we concentrate on the temperature region close to TN. The figure shows the transition 
from the single-q state (figure 2(a)), which appears at TN, to the two-q state (figure 2(b)), 
which starts to develop at Tz - 19.1 K. The measurements were obtained using the HB- 
1 polarized beam triple-axis spectrometer at the high-flux isotope reactor at Oak Ridge 
National Laboratory, USA. The singlecrystal sample was approximately cubic in shape 
(4 mm along an edge) and weighed 0.469 g. It is identical to the one used by Moon er 
al (1979). Moon and Koehler (1980) and Moon et a1 (1983). The sample was mounted 
with a [OOI] axis vertical (orientation I) in a variable-temperatue cryostat. The incident 
neutron wavelength was 2.44 A, and the spectrometer was operating in the elastic mode 
with pyrolytic graphite monochromator and analyser crystals. The experimental set-up 
allowed us to study the magnetic satellites around the (100) nuclear Bragg peak. The 
resolution geometry corresponds to the situation depicted in figure 3(a) with improved exit 
collimation (hatched ellipses). Figure 4(a) and (b) shows neutron diffraction scans through 
the (1 - qxOO) (A' in figure 3(a)) and (1 - qxqxO) (B in figure 3(a)) reciprocal lattice 
points in the qy direction with qx - $. The solid curves me resoltion limited Gaussian fits. 
Above - 19.1 K the magnetic scattering at (1 -qxOO)  (or (1 +q,OO)) has vanished and the 
difiaction pattern at (1 - qxgxO) may equally well be fitted to a single peak broadened by 
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q,: N 1/7 in [a) and (b) 
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Figure 4. The temperature evolution of the magnetic satellites near the (100) reciprocal lonice 
point measured on heating. The data show the transition from the single-q state near TN Lo the 
two-q state a p m n g  below TZ - 19.1 K (see also figure 2(a) and 09). The duta obtained at 
the different temperatures are displaced by AT with respect to each olhcr sa that Le ordinate 
values 30 and 0 coincide with the temperature scale to Le right. 

critical scattering (shown by dots for 19.7 K). The intensity difference between the satellite 
pair at (1 -q&O) can be accounted for by geometrical factors in the magnetic cross section; 
it is not an effect of inhomogeneous domain population. The peaks around (1 - qxoO) (or 
(1  + qxOO)) are weak and rather broad, and based only on the neutron diffraction data; it is 
difficult to estimate accurately the transition temperature Tz exactly. However, TZ = 19.1 K 
obtained from thc measuremenb of thermal expansion (Zochowski and McEwen 1986) is 
consistent with the neutron dif6action data. 

The data in figures 5 and 6 cover a wider temperature range, and illustrate the transitions 
from the two-q state (figure 2@)) via the three-q (figure 2(c)) to the four-q (figure 2(d)) 
states. Here, the data were obtained at the DR3 10 MW heavy-water moderated reactor 
at Risg National Laboratory, Denmark using either a thermal- or cold-neutron two-axis 
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diffractometer with a detector that could be tilted out of the horizontal plane (normal beam 
inclination geometry). The sample was a rectangular slab of dimensions 4 x 4 x 0.5 mm3. 
It is identical to the one used by Lebech et a1 (1979) and Lebech (1981). The crystal was 
mounted in a variable-temperature cryostat with the [OOl] axis vertical (orientation I). The 
incident neutron wavelength was 1.85 A selected by the (1 11) reflection from a germanium 
monochromator. The tilting detector allowed high-resolution studies of magnetic satellites 
around the (001) as well as around the (100) reciprocal lattice point, i.e. for tilt > 0 and 
tilt = 0, respectively. 

Figure 5 shows data obtained close to the (qxO1) reciprocal lattice point at various 
temperatures below T,. The figure shows equal-intensity contours (arbitrary scale) obtained 
by step scanning parallel to qy (the [-1201 direction) in a net around (q,Ol); figure 5(a) is 
for relaxed exit collimation and figure 5(c) for improved exit collimation. Above 19.1 K, 
figure 5(c) shows a single satellite originating from one of the domains of the single-q 
state (figure 2(a)) with IqI = I = 41. In the intermediate-temperature region above 10 K, 
figure 5(a) and (c) shows two peaks, which originate from two different domains in the two- 
q state (figure 2(b)) with lqll = 1q21. Between - 8 and - 6 K, the three satellites originate 
from threee different domains in the three-q state (figure 2(c)) with lqll = 192 # 1431. 
Finally, below - 6 K, the three observed satellites originate from four different domains 
in the four-q state (figure 2(d)) with 1qIl # 1421 # 1431 # 1q.& where the satellite pair 
corresponding to ql and qz (qlX - 0.107, qk - 0.115) is unresolved. It should be noted 
that in contrast to Forgan et al (1989), we find that even at 1.8 K, q,r = q4x - 0.187 for 
the q3 and q4 satellite pairs. However, the values for qy (q3y - 0.0125 and qdY - 0.0195) 
agree well with the data of Forgan er al (1989). 

Figure 6 shows data obtained around the (100) reciprocal lattice point at 4.2, 10 and 
16 K. The data give experimental evidence for the qx splitting of the q l ,  4 2  satellites at 
low temperatures. In terms of resolution, the experimental set-up is the same as that used 
for figure 5(c). At 4.2 K (figure 6(a)), the resolution geometry corresponds to the situation 
depicted in figure 3@), whereas the resolution geometry matches the situation depicted in 
figure 3(a) at 10 K (figure 6(b)) and 16 K (figure 6(c)). By comparing the equal-intensity 
contours at (1 - q x O )  at 16 and 4.2 K it is evident that at 4.2 K, the satellites are split along 
the qx direction and that qy = 0. The same conclusion may be reached by comparing the 
satellites close to (1 + qz - qZO), but for these satellites the resolution in the qx direction is 
poorer and the conclusion is therefore not quite so obvious (see also figure 2 of the article 
by Lebech and als-Nielsen (1980)), but it has been confirmed by several neutron diffraction 
experiments. The equal-intensity contours in figure 6(b) and (c) are in full agreement with 
high-temperature data shown in figures 4 and 5, i.e. for qy + 0. 

3.3. Results of the final neutron diffraction studies 

Inspired by the experimental evidence presented in figures 4-6 in conjunction with the 
work by McEwen, Forgan and collaborators we made an extensive and systematic study 
of the temperature dependence of the lengths of the modulation vectors characteristic of 
the magnetic sbnctures in Nd. From the previous studies (figures 4 4  and references given 
above) it had become obvious that not only systematic errors, but also the thermal hysteresis, 
caused significant problems when hying to correlate the lengths, IqI, of the modulation 
vectors derived by the different experimental groups and on different single-crystal samples. 
Although the above mentioned results on q = &, qy)  are qualitatively similar, they are 
not totally consistent. In order to obtain consistent data, a substantial data set was collected 
and the resulting temperature dependences of qr and qy are summarized in figures 7 and 
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shown in figures 5 and 6. At the start of the measurements, the mosaicity was about 20'. 
However, possibly because of oxidation or the repeated thermal cycling, the crystal quality 
deteriorated and eventually the mosaicity became so large that the split satellites could no 
longer be resolved. Therefore, the data are less complete below 4.2 K, and some of our 
conclusions need to be further supported when new crystals become available. 

The thermal hysteresis was considerable as illustrated for instance in the inset in 
figure 7(b), and special considerations were needed in order to establish the thermal history 
of the sample. Extreme care was therefore taken during thermal cycling. Before cooling, 
the sample was heated to 25 K and kept there for several minutes. Before heating, the 
sample was cooled to 4.2 K (or 1.8 K) and kept there for several minutes. In order to 
establish a reliable length scale, the lattice parameter was monitored at regular temperature 
intervals on both heating and cooling. In addition, both qx and qy were determined from the 
distances between pairs of satellites and scaled to the length of the (100) reciprocal lattice 
vector. 

The crystal was mounted either with the [OOl] axis vertical (orientation I, figure 3(a) and 
(d)) or with the [-I201 axis vertical (orientation U, figures 3(efi(f)) in order to obtain the 
best possible resolution for the particular aspect of the modulation vector studied. In general, 
qx was determined from o-scans through (001) and (003) with the crystal in orientation II. 
The resolution configurations then correspond to figures 3(e) or (f) for satellites split in the 
qY directions (4, at high temperatures and q3(q4 )  at low temperatures) and for satellites split 
along 4x (41 and q2 at low temperatures), respectively. qy was determined from w-scans 
through (Oq,l) or (Oq,3) with the crystal in orientation I, while qx was simultaneously 
monitored by scans parallel to the [I001 direction with tilt> 0 from (-q,OI) to (q,Ol). 
It should be emphasized that for the crystal orientation Il (figure 3(e) and (f)), the tilting 
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Figure 6. A summvy of neuvon diffraction data ac 4.2. IO and 16 K observed at different 
satellite positions around (100). The figure shows equal-intensity contours (arbitcvy scale) 
obtained by step scanning along qy in a net around the particular satellite region with improved 
exitcollimtion. At 10K,IheoKaxissatellites(l~.p,~'q,O)arenboutfentimeslessintensethan 
lhe (100) nuclea~ p e 4  and they ace about ten times more intense thm the (1 * qxOO) satellites. 
The w o n  for the different satellite intensities is that only py contributes to the ( I  qxOO) 
satellite intensities, while both pz and py contribute to the off axis satellite intensities (see for 
instance Moon et al 1979). 

detector arm offered extreme resolution along qx for (001) type reflections, in particular 
for 1 = 1, the reason for this being that, to a first approximation, the width of an w-scan 
is proportional to the detector set angle r. For the normal beam inclination geometry 
used here, r and v correspond to rotating the detector around a vertical and horizontal 
axis (detector tilt), respectively, and these angular settings define the scattering angle 20s 
through the relation cos(2.9~) = cos(r) cos(u). For (001) type satellite reflections, F e 2&, 
because U # 0. For the (001) satellites, we are in the small-angle limit (r N 0), which 
means that the long axis of the resolution ellipse is almost perpendicular to the q,-direction 
(figures 3(e) and (0). Therefore, qr split magnetic satellites at I and J are very well resolved 
by w-scan or the nearly equivalent rock scans from I to J through (001). Similarly, although 
qy split satellites appear as one peak, the lengths of qx are accurately determined by w-scan 
or the nearly equivalent rock scans from G to H through (001). 

The resulting data for qi = (qix, qiy) (i = 1 or 3) are summarized in figure 7, which 
shows the basal plane components of the modulation vectors in units of the (100) reciprocal 
lattice vector, where 41 refers to the incipient modulation and 43 refers to the additional 
modulation appearing below - 8 K. The thermal hysteresis is evident and may account for 
the relatively large differences between the lengths of the magnetic modulation vectors in 
Nd that are quoted in the literature. For completeness, the values of qy determined from the 
data obtained at Oak Ridge National Laboratory (figure 4) are shown as unfilled triangles 
in figure 7(c). Despite the facts that these data are neither measured on the same crystal 
nor in the cryostat as the rest of the data shown in figure 7(c) and the thermal history is 
not so well established, the two data sets agree remarkably well and illustrate the lock in 
(qy = 0) at T - 19.1 K or - i. 
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are derived from the data shown in figure 4. 
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heating and to 19.1, 17.9. 8.1, 6.8 and 5.2 K on cooling. (a) and CO) correspond to heating and 
coolin& respectively. The solid curves are guides to the eye. The stw correspond to (e, q y )  
calculated for the higher-order commensurate magnetic svuctwes described in section 4. 

Temper" is an implicil p m e t e r  for both axes and Tz corrcsponds to ( q ~ ~ , q l ~ )  = (7.0). 1 

4. Discussion 

Now let us consider figure 8 and first relate it to the ideas about commensurate- 
incommensurate transitions outlined in section 1. The figure has been constructed from the 
data in figure 7@) and (c) (Rise data only) and shows qly as function of qIx (or 42x1 with 
temperature as an implicit parameter. In fact. figure 8(a) shows the same data as reported 
by Lebech and Wolny (1992). At TN (- 19.9 K), 41 = ( q l x , q l y )  N (f ,O),  and ql remains 
constant until Tz, approximately 1 K below TN, where a second phase transition is observed 
(Lebecb 1981, Zochowski and McEwen 1986). Below Tz, qI1 decreases monotonically 
with temperatures and qly becomes non-zero, i.e. the magnetic and the atomic structures are 
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incommensurate in one dimension. Within the framework of the description in section 2, the 
transition at TZ may be considered to be a one-dimensional commensurateincommensurate 
phase transition with order only on the hexagonal sitcs. However, according to previous 
experiments (McEwen et al 1985) and within the mean field approximation (Jensen and 
Mackintosh 1991), the transition at T, is also a transition from a single-q structure to a 
two-q structure. The small deviation from the commensurate value 4 of the modulation 
vector observed at high temperatures between TN and TZ does not cause any observable 
tum of q away from the symmetry direction. A similar effect has been described by Shiba 
(1980) when considering epitaxial growth. Shiba (1980) explains this phenomena as being 
caused by weak interactions between adsorbed atoms, which are strongly coupled to the 
substrate. An analagous explanation may be feasible for the slight deviation from of the 
magnetic modulation vector in Nd. 

In the incommensurate phase, (4) is no longer valid, but it becomes valid again when 
qy = 0 once again after passing a maximum. We postulate that this happens at T, - 10 K, 
when ql = (q lX ,q ly)  = (- i .0) (see figure 7). At this temperature we observe kinks 
in the temperature dependences of both 41. and ply. From our present data we are 
not able to estimate whether there is any particular temperature at which (4) is exactly 
fulfilled for n = 8, and a new experiment on better single crystals is planned. As the 
temperature is lowered further to - 8.2 K a new set of magnetic Bragg peaks with a wave 
vector q3 = (q3rr43y) = (- 0.187,O) is observed (see figures 5 and 7). This additional 
magnetic ordering is ascribed primarily to ordered momen& on the cubic sites. There are 
two experimental facts that should be noted: (i) the ratio between 1q11 and [ q 3 l  at the 
transition is - $, i.e., when it first appears, \q3[ is close to commensurate value 6 ,  and 
(ii), although 43 is associated with order on the cubic sites, it is parallel to the direction 
of highest symmetry for the hexagonal sites. Therefore, below the transition at - 8.2 K, 
the interaction between cubic and hexagonal sites presumably becomes so strong that we 
may expect the commensurate values to be given by (6) rather than by (4). This is indeed 
in agreement with experiment. As the temperature is lowered further, qly tends to zero 
for qlx = 1/(8 + 5)  = 5. There is considerable thermal hysteresis (see figure 7), and 
this behaviour occurs at different temperatures (T,) on heating and cooling. Finally, at 
(also showing large thermal hysteresis, see figure 7) the next commensurate value of qj is 
observed. At this temperature q1 splits into two satellites given by the commensurate values 

incommensurate (g3y # 0, see figures 5 and 7). Presumably at the same temperature, the 
fourth modulation q4 appears, which in turn results in the fourfold splitting of the magnetic 
satellites corresponding to q3x = q4x - 0.187 and 43y # q4y (see figure 5 (c)). 

It should also be noted that, at 4.5 K i n  the proposed four-q state, the len-ghs of the two 
commensurate modulation vectors ql and qz (Forgan eta1 1989) agree reasonably well with 

respectively. In contrast, the lengths of the incommensurate modulation vectors 1q31 - 1941 

are slightly different from the commensurate value 1/(5 + f )  = A ,  and non-zero qsY and 
q4y components are indeed observed (see figure 5(c)). Additionally, it should be noted 
that as the interactions between the cubic and the hexagonal sites become monger at low 
temperatures, we observe the splitting around a commensurate value into ql and 42. This 
phenomenon can be explained if we assume that it arises because of the interaction between 
the cubic and the hexagonal sites. If the commensurate distance between.the cubic sites in 
one layer and the hexagonal sites in the neighbouring layer below is equal to (9 - i), then 
the corresponding commensurate distance, between the same hexagonal sites and cubic site 
atoms in the neighbouring cubic layer below, is equal to (9 + i) (see also section 2 and 

ql = (1/(9-~) ,  1 0) = (&, 0) and q2 = (1/(9+$), 0) = (&, 0). Simultaneously,'q3 becomes 

3 (6), having (q lx .  q lY)  = (1/(9 - $, 0) = (*, 0) and (qkr ay) = + 4). 0) = 01, 
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figure 1). The observation that the q 3  and q4 modulation vectors become incommensurate 
when 41 and q z  become commensurate at low temperatures may be correlated to the fact 
that the direction of highest symmetry for hexagonal sites does not coincide with the 
direction of highest symmetry for cubic sites. Therefore the cubic salellites split in the 
perpendicular direction when the hexagonal becomes commensurate. However, deviations 
from the commensurate values ql = (h.0) and q2 = (&, 0) have been noticed below Ts. 
In order to illustrate this, we consider first the low-temperature hysteresis obtained when 

state shows pronounced hysteresis. Furthermore, when cooling from 13 K to 2.17 K and 
subsequently reheating to 13 K, another interesting behaviour appears. In this connection, 
the most relevant data for q~ and q2 are the eight left hand points in figure 7(b). On 
cooling from 13 K to 2.17 K the data points follow the dotted cooling curve to about 5.2 K, 
where q1 = ($, 0) and q 2  = (2,O) appear as expected from previous thermal cycling. 
Somewhere between 2.95 K and 2.17 K (cooling) q1 and qz collapse into q1 - (b, O), a 
state that persists at least up to 2.95 K when reheating. Above 13 K, the data follow the 
heating curves (figure 7, full curves). Unfortunately, no measurements were made between 
2.95 K and 13 K on heating and the behaviour below 8.2 K of the magnetic structure and 
the modulation vectors is so complex that most of the above remarks about q1. qz, q3 and 
q 4  need to be confirmed by future experiments on better single crystals. 

In order to explain, at least phenomenologically, the temperature dependence of the 
modulation vector of the magnetic structure in Nd, we have pursued somewhat the ideas 
of commensurate magnetic structures outlined above and those of epitaxial growth (Shiba 
1980, Grey and Bohr 1991, Bohr and Grey 1992). Our ideas are based on the experimental 
findings that, at some temperatures, the wave vector of the magnetic ordering in Nd seems to 
have a preference towards commensurate values such as q = (;, O), (4.0) etc as outlined 
above. We postulate that, within the experimental uncertainties, the modulation vectors, 
given by the solid and filled circles between q = (5,O) and q = (g,O) in figure 8, 
can also be represented by a special kind of higher-order commensurate structure in two 
dimensions, where the magnetic unit cell is turned around the hexagonal axis with respect to 
the crystallographic unit cell. The stars in figure 8 represent such structures. For qIx < 4, 
i.e. for T < 10 K, the q dependence becomes more complex because of the interaction 
between the cubic and hexagonal site orderings and we will exclude attempts to explain the 
q dependence below 10 K until the above postulate has been considered further theoretically 
and experimentally. 

The postulate is based on the following idea. Within each hexagonal layer the Nd 
atoms lie on a regular lattice consisting of equilateral triangles with the sides of unit length. 
Equivalently, the spin system forms a fictive magnetic lattice, which may decorate the 
crystal lattice or ‘grow epitaxially on it’. For a three-q structure this fictive spin lattice 
consists also of equilateral triangles with sides whose length (21r/lp() differs from those 
forming the crystal lattice. Furthermore, for qy > 0, the fictive spin lattice is turned 
through a small angle y with respect to the crystal lattice. Depending on the values of 
141 and y ,  the fictive spin lattice may at some points coincide with points of the crystal 
lattice sites. This happens at lattice sites r;, for which q r; = 21. In two dimensions, 
the magnetic smcture is commensurate with the crystal lattice, but the commensurate 
cell is much larger than the original crystallographic cell. In general this higher-order 
commensurate magnetic unit cell is turned through an angle that may even be quite large 
with respect to the original crystallographic unit cell. We call this cell a higher-order 
commensurate cell. The length of the higher-order commensurate cell edge will not normally 
be commensurate with a suitably enlarged crystallographic unit cell. However, the magnetic 

cooling to 4.2 K (figure 7(b)). Obviously, the transition to the q1 = (I, 3 0) and q z  = (2 ,  0) 
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cell is commensurate in two dimensions, because in terms of hexagonal Miller indices the 
condition h,a, + t b ,  = h,% + k.4 must be fulfilled. Here, ai and bj refer to the al and 
a2 hexagonal axes (figure 1) with i = C or S ,  where C and S refer to the crystallographic 
cell and the magnetic (spin) unit cell. The misfit parameter 01 is given by 

= lasl/lacl (7) 

and the rotation angle p of the higher-order commensurate magnetic unit cell by 

tan@) = kcsin(lZV)/[hc +k~cos(l20")]. (8) 

The idea is illustrated in figure 9. Figure 9(a) shows a three-q magnetic lattice with q = 
(f, 0) (unfilled circles) superimpossed on the crystal lattice (filled circles). Not surprisingly 
the resulting commensurate magnetic cell (fine rhombus) is a 7 x 7 crystallographic unit 
cell (hexagonal units), which is larger than the normal crystallographic cell (small black 
rhombus in the left hand comer of figure 9(a)), but has the same orientation as this cell 
with respect to the crystallographic a- and b-axes. Figure 9(b) shows a similar pattern, 
but here the superimposed three-q magnetic lanice is incommensurate with the crystal 

. lattice and turned through a small angle y = tan-'(qy/qx) around the hexagonal axis with 
respect to the crystallographic cell. The crystal and spin lattices are commensurate in higher 
order in the way described above, and the resulting magnetic unit cell is turned through 
a rather large angle with respect to the crystal lattice and the crystallographic a- and b- 
ayes. As in figure 9(aj, the magnetic and the crystallographic cells are shown as fine and 
filled rhombuses, respectively. For illustrative purposes and in order to accommodate the 
magnetic unit cell within the lattice shown on the figures, the fine rhombuses show the mirror 
images of the cells defined by the Miller index axes (hc, kc) and (hs,  ksj indicated in the 
lower left hand corners of figure 9(a) and (b). For the example shown in figure 9(b), 
( h c , k )  = (24,5) and (hs ,ks )  = (25,4) in hexagonal Miller indices with the misfit 
parameter 01 = 0.94292 and the rotation angle fi  = 11.387". In a more conventional 
notation, this corresponds to q = (e. q y )  = (0.13470,0.00664) in Cartesian coordinates 
or IqI = 0.1349 and y = 2.822" in polar coordinates. 

The points shown by stars in figure 8(a) and (b) all represent magnetic higher-order 
commensurate lattices calculated similarly to the pattern shown in figure 9(b). One may 
therefore conclude that with decreasing temperature the magnetic structure of Nd goes 
through a series of two-dimensional commensurate-commensurate phase transitions rather 
than through a series of one-dimensional commensurate-incommensurate phase transitions. 
It should be remarked that, for illustrative purposes, figure 9 shows the situation for three- 
q magnetic lattices. Single-q and two-q magnetic lattices will both form streaky patterns, 
because the triangles formed by the magnetic lattices consist of isosceles triangles instead of 
equilateral biangles. These types of lattice are also higher-order commensurate in the sense 
described above. However, the streaks formed by the singleq and the two-q lattices will be 
turned differently with respect to the a and b-axes, because the isosceles triangles will have 
either two sides or one side of unit length. It is important to recognize that the stars shown 
in figure 8 do not in any way represent a unique set of higher-order commensurate magnetic 
lattices. In fact, there exist a discrete, but infinite number of higher-order commensurate 
lattices, which one might describe as a two-dimensional pattern of 'devil stairs'. The stars 
do, however, represent the particular set of magnetic lattices that agrees best with the 
experimental data in figure 8, and they have been chosen only to illustrate the postulate 
that the experimental points may indeed correspond to higher-order commensurate magnetic 
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Figure 9. An iUusVation of the f o m d o n  of the highS-order commemurate lattices, which 
may be obtained by rotating the fictive magnetic lattice (unfilled circles) through a S m J U  mgle 
y with mpgt to the crystal lattice (filled circles). Thc cell of the crystal lattice is hexagonal 
with unit length. The magnetic lattices correspond to three-q Lattices with 9 = {+. 0 )  (a) and 
p - (0.1347,0.0066) (b) (Cartesian coordinates). The crystallographic and the highworder 
commensurate magnetic unit cells are shown by filled and fine rhombuses, respectively. It 
should be noted that in order to accommodate the magnetic unit cell within the lattice shown 
io here figures, the hne rhombuses show the mirror images of the cells dehned by the Miller 
index axes (hc, k )  and ( k s ,  ks).  The relative dirations of (hc. kc) and (hs. ks)  are shown in 
the lower lee hand comm of (a) and (b). 

structures in Nd. In order to justify the postulate, it is necessary to calculate the free energy 
of the system and to consider theoretically the balance between for instance the magneto- 
elastic and anisotropy energies, which are some of the important mechanisms governing the 
temperature dependence of the magnetic modulation vector in Nd. We hope our experimental 
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findings will stimulate such efforts. It might also be added that recently Hegh Jensen (1994) 
made a theoretical study of the so called ‘rotating staircase’, a dynamic dissipative system 
with parameters (4z, qY). This system was found to behave in a similar way as shown in 
figure 8, i.e. qy goes to zero whenever qx approaches a low rational number. 

The ideas about two-dimensional commensurate magnetic structure in Nd naturally 
suggest a strong relationship between the crystal and the magnetic lattice. Presumably, 
the two lattices adjust to each other whenever the magnetic structure changes. Therefore, 
it would be informative to study the effects of the changes in magnetic structure on the 
lattice distortions by high-resolution synchrotron x-ray diffraction. In particular it would be 
feasible and of importance to study possible changes in lattice distortions at the transitions 
between the different multi-q structures. Because the superimposed multi-q magnetic and 
crystal lattices normally form streaky patterns of different orientations, it might even be 
possible to observe the change from a single-q to a two-q magnetic structure as a simple 
rotation of the crystallographic unit cell. 
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